MATH 54 - MIDTERM 3 STUDY GUIDE

PEYAM RYAN TABRIZIAN

Note: Midterm 3 is on Friday, July 27th in 4 Evans from 12:30 pm to 2 pm. However, come early, because we might start earlier than that! It covers sections $5.1-5.5$ of the Linear Algebra book and sections $9.4-9.8$ of the Differential Equations book. There will be 5 questions: 3 linear algebra ones, and 2 differential equations ones.

Note: 1.3.4 means 'Problem 4 in section 1.3'

Chapter 5: Eigenvalues and eigenvectors

- Find all the eigenvalues of a matrix (you may have to use the rational roots theorem and long division to figure out what the roots are) ($5.1 .17,5.2 .3,5.2 .11$)
- Given an eigenvalue λ, find all the eigenvectors corresponding to λ (5.1.9, 5.1.16)
- Find a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$ (5.3.7, 5.3.11, 5.3.17, try to do those without the hint on page 293)
- Use $A=P D P^{-1}$ to calculate A^{3}, \sqrt{A}, e^{A} etc. (5.3.1)
- Determine if a matrix A is diagonalizable or not (remember, you have to look at the eigenvectors, not the eigenvalues)
- Know examples of matrices which are not diagonalizable (see lecture), and know how to show that they are no diagonalizable
- Know that a square matrix is invertible if and only if 0 is not an eigenvalue of A (this is the last statement of the IMT)
- Show that if A is diagonalizable, then A^{2}, A^{-1}, A^{T} etc. are diagonalizable
- Show that if A and B are similar, then so are A^{2} and B^{2}, A^{-1} and B^{-1}, A^{T} and $B^{T}(5.2 .24,5.4 .19,5.4 .20)$
- Know how to find complex eigenvalues/eigenvectors (remember that you only need to do half of the work!) $(5.5 .1,5.5 .5)$

Chapter 9: Systems of differential equations

Know how to:

- Write a system of differential equations in matrix form (9.4.1)
- Convert a higher-order differential equation (like $y^{\prime \prime \prime}+y^{\prime \prime}-2 y^{\prime}+y=0$) into a system of differential equations (9.4.5)
- Solve a system of differential equations $\mathbf{x}^{\prime}=A \mathbf{x}(9.5 .12,9.5 .13,9.5 .14,9.5 .15$, 9.5.19, 9.6.1, 9.6.3)

Note: You do NOT need to know how to know how to draw pictures of the solutions you found!

- Show that 2 or 3 vector functions are linearly independent (9.4.15)

[^0]- Solve systems using undetermined coefficients and/or variation of parameters (9.7.1, 9.7.3, 9.7.4, 9.7.11, 9.7.13, 9.7.15)

Note: I will not ask you anything fancy, just know how to do the basic stuff! Also, if there's a complicated integral to evaluate, I will give you the formula!

The following will NOT appear on the required portion of the exam, but might appear as a bonus question!

- Given A, know how to find e^{A} by diagonalizing A, and use this to solve $\mathbf{x}^{\prime}=A \mathbf{x}$. Also remember the motivation leading to the definition of $e^{A t}(9.8 .7)$

True/False Extravaganza

Check out the following set of T/F questions (solutions are in the HW hints, but beware, there might be mistakes, e-mail me whenever something seems to be wrong): 5.1.21, 5.1.22 (ignore (c)), 5.1.24 (not a T/F question, but good to know), 5.2.21, 5.3.21.

Also, review the T/F extravaganza that we covered in lecture, those are very good/important!
Note: There will be NO T/F questions about differential equations! However, there will be $5 \mathrm{~T} / \mathrm{F}$ questions without justifications, and $\mathbf{2}$ T/F questions with justifications. They will all be linear algebra questions!

CONCEPTS

Here are a couple of concepts we learned so far. You don't have to memorize the definitions, just have a rough idea of what those things are

- Eigenvalue
- Eigenvector
- Characteristic polynomial
- Diagonalization
- Diagonalizable / Not diagonalizable
- The test where if a matrix A has n distinct eigenvalues, then it is diagonalizable
- Similar matrices
- System of differential equations
- Wronskian matrix / Fundamental matrix
- e^{A}

[^0]: Date: Friday, July 27th, 2012.

